Providing a Guaranteed and Viable Curriculum

Supporting a Passion and Commitment to Educational Excellence

UNWRAP A STANDARD: WHAT DO STUDENTS HAVE TO KNOW AND BE ABLE TO DO?

Domain:FunctionsDomain Weight:21% -55% of AASA items, 19% of course standards
(DOK1:10-20%, DOK2: 60-70%; DOK3: 12-30%)

Standard: 8.F.A.3 Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Emerging (1)	Developing (2)	Proficient (3)	Distinguished (4)
I can identify the	l can rewrite a	I can interpret the	I can write the
slope and y-	standard linear	equation $y = mx + b$	equation y = mx + b
intercept of a	equation in	as defining a linear	for a graph that is a
line given an	slope-intercept	function whose	straight line.
equation.	form.	graph is a straight	
		line.	I can apply my
			understanding of
		I can give examples	functions that are
		of functions that are	linear and functions
		not linear.	that are not linear to
			practical situations.

FLASHBACK STANDARD: 7.EE.1 Apply the properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

PREVIEW STANDARD: 9-12.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase "in two or more variables" refers to formulas like the compound interest formula, in which $A = P(1 + r/n)^{nt}$ has multiple variables.)

ESSENTIAL KNOWLEDGE/CONCEPTS	ESSENTIAL SKILLS	
List the underlined nouns.	List the circled (or <i>italicized</i>) verbs.	
FS		
PS	FS	
	PS	
	Level of content complexity rather than content difficulty.	
WANDED AUESTIANS		
WONDER QUESTIONS	ESSENIIAL VOCABULARY	
*Including open-ended and 'second' questions	List all key vocabulary	
	FS	
	PS	
LEARNING OBJECTIVES ALIC	GNED TO THE STANDARD	
What 'I can' statement(s) will cla	rify the objective for students?	
EVIDENCE OF STUD	DENT MASTERY?	
How will we know wh	hen they know it?	
Sproutio historica		
SPECIFIC INSTRUCTION	NAL FRAMEWORK ?	
What will we do to help them k What will we do for student	now/understand/can do it? s who still don't know it?	
What will we do for students who already know it?		

Providing a Guaranteed and Viable Curriculum

Supporting a Passion and Commitment to Educational Excellence

UNWRAP A STANDARD: WHAT DO STUDENTS HAVE TO KNOW AND BE ABLE TO DO?

Domain:FunctionsDomain Weight:21% -55% of AASA items, 19% of course standards(DOK1:10-20%, DOK2: 60-70%; DOK3: 12-30%)

Standard: 8.F.3 Interpret the <u>equation y = mx + b</u> as defining a <u>linear function</u>, whose <u>graph</u> is a <u>straight line</u>; **give** <u>examples</u> of <u>functions</u> that are not <u>linear</u>. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Emerging (1)	Developing (2)	Proficient (3)	Distinguished (4)
I can identify the	l can rewrite a	I can interpret the	I can write the
slope and y-	standard linear	equation y = mx + b	equation y = mx + b
intercept of a	equation in slope-	as defining a linear	for a graph that is a
line given an	intercept form.	function whose	straight line.
equation.		graph is a straight	
		line.	l can apply my
			understanding of
		l can <mark>give</mark> examples	functions that are
		of functions that are	linear and functions
		not linear.	that are not linear to
			practical situations.

FLASHBACK STANDARD: 7.EE.1 Apply the properties of operations as strategies to **add**, **subtract**, **factor**, and **expand** linear expressions with <u>rational coefficients</u>.

PREVIEW STANDARD: 9-12.A.CED.2 Create linear, quadratic, and exponential equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase "in two or more variables" refers to formulas like the compound interest formula, in which $A = P(1 + r/n)^{nt}$ has multiple variables.)

ESSENTIAL KNOWLEDGE/CONCEPTS What Do Students Need to Know/Understand? List the underlined nouns.	ESSENTIAL SKILLS What Do Students Need to Be Able to Do? List the circled (or italicized) verbs.			
Equation of line Slope y-intercept	Interpret Give (Create) Identify			
Linear Function Graph Points Undefined	Rewrite Write Apply			
Rate of Change Positive. Negative Zero	FS Apply Add Subtract Factor			
Coordinates Integers Vertical Horizontal	Expand			
Transformation Point on the line Function	PS Create Graph			
FS Linear Expression Rational Coefficient	DOK LEVEL			
PS Linear Quadratic Exponential	difficulty.			
Equations Functions Scales Coordinate	DOK 1 DOK 2 DOK 3			
WONDER QUESTIONS How can we capture student wonder? *Including open-ended and 'second' questions	ESSENTIAL VOCABULARY What Do Students Need to Comprehend? List all key vocabulary			
 In what situations could rate of change be less than 	Equation of line Linear Equation Graph			
zero? In what situations could rate of change be greater than zero?	Points Undefined Rate of Change			
• Are there any practical situations where the <i>y</i> -intercept	Positive Negative Zero Coordinates			
 How could vou use a graph of an equation to make 	Integers Vertical Horizontal			
predictions?	FS Linear Expression Rational Coefficient			
	PS Linear Quadratic Exponential			
LEARNING INTENTIONS AND SUCCESS CRITERIA ALIGNED TO THE STANDARD What 'I can' statement(s) will clarify the objective for students?				
EVIDENCE OF STUDENT MASTERY? How will we know when they know it?				
SPECIFIC INSTRUCTIONAL FRAMEWORK? What will we do to help them know/understand/can do it? What will we do for students who still don't know it? What will we do for students who already know it?				

EVIDENCE OF STUDENT MASTERY?

How will we know when they know it?

Item #1: Alignment to ALD: 8.F.3.0 (Flashback to 7.EE.1)

Which expressions are equivalent to 2 + 2m + m + 6 + m ?

A. 4(m + 2)
B. 2(2 +2m)
C. 8 + 2m
D. 12m

Item #2: Alignment to ALD: 8.F.3.1

Use the following linear equation to answer each part of the question.

$$y = \frac{2}{3}x - 7$$

Part A. What is the slope of this function?

Part B. What does the slope tell us about this function?

Part C. What is the y-intercept of this function?

Part D. What does the y-intercept tell us about this function?

Item #3: Alignment to ALD: 8.F.3.2

The linear equation below is in standard form.

5x + 3y = 15

Part A. Rewrite it in slope-intercept form. Show your thinking.

Part B. Use the slope-intercept form to graph the linear equation.

Item #4: Alignment to ALD: 8.F.3.3

The function y = 20.25x + 5 represents the total cost, y dollars, of buying x tickets to a concert.

Part A. Is this a linear function?Part B. Explain your answer with sentences and/or a graph.

Item #5: Alignment to ALD: 8.F.3.3

Jerome wants the graph of the equation $y = x^n + \frac{1}{2}$ to be a linear equation.

- Part A. What must be the value of n if his equation is to be linear?
- **Part B.** Create an equation with a different value of n that result in a graph that is not linear.
- Part C. State and graph three ordered pairs from the non-linear equation to verify your answer from Part B.

Item #6: Alignment to ALD: 8.F.3.3

Use the following equation to answer each part of the question.

$$y = \frac{x^3}{3} + 5$$

Part A. Is the equation linear or nonlinear? **Part B.** Justify your response to Part A.

Item #7: Alignment to ALD: 8.F.3.3

Part A. When graphed, which situation's data would be linear?

- **A.** The temperature of the roof of a house every hour for 24 hours.
- B. A person's body temperature every hour for a year.
- **C.** The temperature of water rising 3°F every hour.
- **D.** The daily temperature of a city for a year.

Part B. Explain how you were able to identify which situation was linear.

Item #8: Alignment to ALD: 8.F.3.4

Part A. Write the equation of the line shown in the graph below. **Part B.** Show your thinking.

Item #9: Alignment to ALD: 8.F.3.4

Suppose a <u>maglev train</u> travels a long distance and maintains a constant speed of 83 meters per second for a period of time once it is 250 meters from the station. How can we analyze the train's distance from the station as a function of time? In this section, we will investigate a kind of function that is useful for this purpose and use it to investigate real-world situations such as the train's distance from the station at a given point in time.

EVERY STUDENT, EVERY DAY, NO EXCUSES Student Personal Goals to Celebrate and Chart Progress

My Learning	Getting	On My	ľm	Notes to
Goal	Started	Way	There	Self
I can identify the slope				
and y-intercept of a line				
given an equation.				
I can rewrite a standard				
linear equation in slope-				
intercept form.				
I can interpret the				
equation y = mx + b as				
defining a linear				
function whose graph is				
a straight line.				
I can give examples of				
functions that are not				
linear.				
I can write the equation				
y = mx + b for a graph				
that is a straight line.				

Guided Group Lesson

Standard: 8.F.3

Interpret the <u>equation</u> y = mx + b as defining a <u>linear function</u>, whose <u>graph</u> is a <u>straight line</u>; give <u>examples</u> of <u>functions</u> that are not <u>linear</u>. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Group	Emerging	Developing	Proficient	Distinguished
Members				

Warm-Up:

Place students in pairs. Have them play a game of 'Battleship' with slope and y-intercept. Each student has a 10x10 grid to graph a linear function with integer slope and y-intercept. Place a divider between the grids. Students must ask questions of their partner to determine their partner's linear equation and resulting graph.

Vocabulary

Equation of line Slope y-intercept Linear Function Graph Points Undefined. Rate of Change Positive. Negative Zero Coordinates Integers Vertical Horizontal

Emerging	Developing	Proficient	Distinguished
Students play a game of 'Guess the Mystery Line'. Students are provided clue cards to determine the standard form of a linear equation. Clues can include graphs, points on a line, and/or the slope and a point on a line. *Provide a simple gameboard to allow students to move a certain number of spots based on each correct answer.	Pairs of students use their Think Pads to record their predictions of 'Linear Function', 'Function but not Linear', or 'Not a Function' using a Where Do I Belong chart that includes a fourth column labeled, 'What makes me say this'.	Students are directed to https://www.allconnect.com/internet Have students enter their local zip code and compare rates of change in cost of plans between two providers. Justify which plan is the best by providing the rate of change and include a graph of the plans on the same grid. Ask students to provide three examples for each chosen plan to determine cost to the customer.	Newton County, Georgia's <u>estimated population</u> is 116,390 with a growth rate of 2.04% in the past year according to the most recent United States census data. Newton County, Georgia is the 24th largest county in Georgia. The 2010 Population was 100,133 and has seen a growth of 16.24% since this time. Assuming a constant annual growth rate, write the linear function to represent Newton's annual growth rate. What will be the population in 2040?

Observations: What you notice about your students during small group instruction. Next Steps:

What will you do with these students next? Change groups, repeat, etc.